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Periodic solutions and bifurcation behavior in the parametrically damped two-well Duffing equation
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We determine the stability boundaries of the stationary solutions of the parametrically damped two-
well Duffing equation in terms of Floquet theory. The bifurcation behavior at the stability boundaries is
investigated in detail. Many low primitive periodic solutions and their bifurcation structures in the pa-
rameter plane have been found by numerical simulation. The coexisting attractors of this system are

also discussed.

PACS number(s): 05.45.+b

I. INTRODUCTION

For a damped nonlinear dynamical system, an external
periodic force may be introduced in at least two typical
ways. One is an additive form

d’x dx | dV(x)

— + ——-=FsinQt ;
) +k dt + dx sin ; (1)

the other is a parametric modulation form

d’x . dx | dV(x)
+k(1+FsinQt)——+——-=
g2 R EsnQn) g
where k, F, and () are the damping coefficient, the forcing
amplitude, and the forcing frequency, respectively. V(x)
is the potential function of the system. When the poten-
tial function takes the form

0, (2)

V(x)=—cosx , (3)

Egs. (1) and (2) become the forced damped pendulum and
the parametrically damped pendulum, respectively. They
all can exhibit complicated dynamical behavior, such as
period-doubling bifurcation leading to chaos and tran-
sient chaos, and so on [1-3]. When the potential func-
tion is

4 2

x x
= — —— ——
V(x) 4 7 4)
Egs. (1) and (2) become
d’x dx 3 .
._+ —_ =
i +k o 7YX FsinQt , (5)
d’x . dx
ax 3_
i k(1+F sinQt) ar +x°—x=0, (6)

respectively. Equation (5) is just the well-known driven
damped two-well Duffing equation. The system can ex-
hibit rich and complicated bifurcation behavior in the pa-
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rameter space [4—7]. Equation (6) is the parametrically
damped two-well Duffing equation, which will be investi-
gated in detail in this presentation. In contrast to Eq. (5),
Eq. (6) always possesses one pair of stationary solutions
x==1, x =0, which, however, may be unstable against
certain perturbations. The stability boundaries of these
solutions can be discussed by using the methods of
Lindstedt-Poincaré perturbation and Floquet theory
[2,3]. In this paper we mainly study the dynamical
behavior of the parametrically damped two-well Duffing
equation. .

This paper is organized as follows. In the next section
we discuss the symmetry of the two classes of dissipative
differential equations. In Sec. III we determine the stabil-
ity boundaries of the pair of stationary solutions using
the Floquet theorem. In Sec. IV we investigate the bifur-
cation behavior at the stability boundaries numerically.
In Sec. V we study the bifurcation behavior of some low
periodic solutions in the parameter plane and the basin
structure of a number of coexisting attractors. Finally, in
Sec. VI we make a few concluding remarks.

II. THE DISCRETE SYMMETRY OF TWO CLASSES
OF DISSIPATIVE DIFFERENTIAL EQUATIONS

Denoting y =dx /dt, Egs. (1) and (2) can be rewritten
as

dx

gt_:y ’

dy __, _ dV(x)
F7RR A
dx

—d7_y ’

(7)
+ F sin{)t;

(8)
dy _ : _dV(x)
i k(1+F sinQt) Tdx

respectively. If V(—x)=V(x) we can introduce two
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transformations T'; and T, for Egs. (7) and (8)

T1(X,y,t)= _‘x,_y’t+l} ’ 9)
Q
: 27

T2(x’y,t)= —x’_y’t_*_? ) (10)

respectively. If X=(x(z),y(t)) is a solution of Eq. (7)
[(8)], then T, X [T,X] is also a solution of the respective
equations. The difference between the two transforma-
tions is that the time shift of Eq. (9) is a half period of the
driven force, but that of Eq. (10) is a whole period of the
force. Transformation T'; generates an antisymmetry of
Eq. (7) between any two Poincaré sections with a phase
difference of a half period 7w/ and T, generates an an-
tisymmetry of Eq. (8) with, however, a phase shift of a
whole period of the external force. Using periodicity of
the external force, we have

T,=1. (11)

T, , divide the orbits of Egs. (7) and (8) into two classes
in accordance with the eigenvalues of 7', ,. If T ,X =X,
X is symmetric; if T ,X = —X, it is asymmetric. In gen-
eral, for a symmetric orbit, its eigenvalues are positive.
Therefore, the symmetry must be broken before the
period-doubling bifurcation, where the relevant eigenval-
ueis —1.

III. STABILITY BOUNDARIES
OF THE STATIONARY SOLUTIONS

For convenience we rewrite Eq. (6) as

2
a)zngx+q[1+265in(2t)]% +x3—x=0, (12)
where we use rescalings
2 =2 ke  _F
t—»ﬂ,w—z,q 2,6 > (13)

The linearized equation for a perturbation £ around the
pair of stationary solutions x = *1, X =0, reads

*E+q(1+2esin2t)é+26=0 . (14)

The stability boundaries of the stationary solutions of Eq.
(12) can be determined from this linearized equation. Ac-
cording to the Floquet theorem, a Floquet multiplier
must vanish at the stability boundaries. Thus we may as-
sume the existence of

E=Ay+ 3 (A,cosnt+B,sinnt) . (15)
n=1

Inserting expression (15) into Eq. (14) and comparing
each harmonics on both sides of the equation, we obtain

(2—n%w?) A4, +ngB,
+q6[(n _2)An_2_(n +2)An+2]:0 )
(2—n%w*)B,—ngA4, (16)
+qe€[(n —2)B, _,—(n+2)B,,,]=0,
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where we have used the identities 4_,=A4, and
B_,=—B,. It is obvious that the solutions of Eq. (16)
decompose into two independent classes, one involving
odd n and another even n. No nontrivial solution exists
for the latter, so we need to consider only odd n. For the
lowest-order approximation we can truncate Eq. (16) at

n =1 and obtain the two equations
(2—w?—qe)A,+qB,=0,
(17)
(2—w?+qge)B;—qA,=0.

The existence of a nontrivial solution requires the deter-
minant of the coefficient matrix to vanish

2—w?*—qe g
= 18
—q 2—w*+qe 0, (18)
which gives rise to
el=g "V (2—w*?+q*. (19)

The next approximation is obtained from the truncation
at n =3. From Eq. (16) four equations for 4, 43, B,
and B, similar to Eq. (17), may be derived and the condi-
tion for the existence of a nontrivial solution becomes

2—w’—qe q —3ge 0
— 2—w*+ge O —3ge
? 2 =0. (20)
qe 0 2— 9% 3q
0 ge —3g 2—9w?

From Eq. (16) any finite higher-order approximations of
the critical condition may be found. We show a result
which is obtained at the truncation » =5 in Fig. 1 by the
dashed lines. The threshold is very close to the solid lines

10 -

FIG. 1. Stability boundary of the stationary solutions x =+1,
X% =0 in the Q-F parameter plane. k=0.2 for this figure and all
the following figures. The solid lines are determined by the ex-
act computation (one eigenvalue of the pair of stationary solu-
tions is equal to —1). The dashed lines are obtained in terms of
the Floquet theorem at the truncation n =5.
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determined by the exact computation. The parameter k
is fixed at 0.2 throughout the paper.

IV. BIFURCATION BEHAVIOR
AT THE STABILITY BOUNDARIES

The stability boundary of the solutions x =+1, x =0 is
V shaped as shown in Fig. 1. At this stability boundary,
a common feature is that one of the eigenvalues of the
stationary solutions is always — 1. However, the bifurca-
tion behavior is rather rich along the boundary, i.e., the
dynamics is rather different and interesting as the param-
eters are varied to cross different segments of this bound-
ary. On the right-hand segment of the V-shaped curve
there is period-doubling bifurcation. We show a bifurca-
tion diagram in Fig. 2(a) along the vertical line Q=3.3,
where x is plotted at t =2mn with n being large enough to
completely exclude the transient process. The numerical
result shows that a period-two solution arises via period-
doubling bifurcation at F=5.385, right at the critical
value theoretically predicted in Fig. 1. From the figure it
is clear that a symmetric period-two orbit coexists with
this period-doubling asymmetric orbit and both attrac-
tors form an interesting hysteresis phenomenon.

On the left-hand segment of the stability boundary of
Fig. 1, the critical eigenvalue of the stationary solutions is
still equal to —1; however, the bifurcation behavior is
completely different and much more complicated. As
Q>2.49, when the stationary solutions lose their stabili-
ty, the system can be attracted to another single-well
(asymmetric) attractor, which may be periodic (with
periods two, four, eight, etc.) or chaotic, according to the
values of ). From Figs. 2(b)-2(d) we fix different () and
increase F to cross the left-hand side of the V-shaped
curve of Fig. 1. The variety of the bifurcations on a sin-
gle critical curve show the rather rich dynamic behavior
of our model. In each figure the x =1, x =0 stationary

(a)

i 1

L 1
2 2.4 2.8 3.2 3.6
F

FIG. 2. Plots of x at t =2mn, with n being large enough to ex-
clude the transient process, versus F. (a) 2=3.3, (b) 2=2.7, (¢)
=2.495, and (d) 2=2.3.
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FIG. 3. The solid line indicates the stability boundary of the
stationary solutions. The notations SNB, PD, and CB represent
the saddle-node bifurcation curve, the period-doubling bifurca-
tion curve, and the boundary of the chaotic region, respectively.
nP denotes the period-n motion.

solution loses its stability, via saddle-node bifurcation, at
the critical F value predicted in Fig. 1 with very high pre-
cision. As Q decreases the asymptotic state of the sys-
tem, after the instability of the steady solution, changes
from periodic orbit to small region chaos and then to
large region chaos, as shown in Figs. 2(b)-2(d).
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25 YA 4
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FIG. 4. Bifurcation structure of 1P asymmetric solutions in
the Q-F plane. 1PSA and 1PCA denote period-one asymmetric
single-well and cross-well motions, respectively. All other nota-
tions have the same meaning as in Fig. 3.
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FIG. 5. Bifurcation structure of the symmetric 2P and 4P
solutions in the Q-F plane. 2PCS and 4PCS denote symmetric
cross-well period-two and -four motions, respectively. SB
represents the symmetry-breaking bifurcation curve. All other
notations have the same meaning as in Fig. 3.

It is interesting to remark that as 2.1<Q <2.49, the
motion of the system after instability turns out to be
large-scale cross-well chaos via an intermittency; at the
critical point one eigenvalue of the stationary solutions is
still —1. This is type-III intermittency according to Ref.
[11]. However, as Q <2.1, the behavior of the system be-
comes period-doubling bifurcation after the stationary
solutions lose their stability.

The complicated bifurcation diagram in Fig. 2 can be

FIG. 6. Asymptotic orbits of Eq. (6) at Q=3.5, F=5.0.
Solid line, the symmetric period-two solution; dashed line, the
symmetric period-four solution.
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much better understood in Fig. 3, where regions S, nP,
PD, SNB, and CB denote the stationary solution, the
period-n solution, the period-doubling bifurcation curve,
the saddle-node bifurcation curve, and the boundary of
the chaotic region, respectively. It is clear that through
the right-hand side of the V-shaped solid curve the bifur-
cation is period doubled (supercritical bifurcation),
through the lower part of the left wing the bifurcation is
of saddle-node type (subcritical bifurcation), and the
asymptotic solutions after the instability of the stationary
solutions depend on where the critical boundary is
crossed. Through the upper part of the left wing of the
V-shaped curve, the bifurcation is again period doubled.

V. COEXISTING ATTRACTORS
AND THEIR BASIN BOUNDARIES

In the foregoing sections we investigated the bifurca-
tion behavior of the system at the stability boundary of

-3 -2 -1 0 1 2 3
x

FIG. 7. Basin structure of the attractors in the Poincaré sec-
tion at Q=3.5, F=5.0. The corresponding basins are
represented by the black regions. (a) The basin of the stationary
solution x =1, x =0. The basin of the state x=—1. x =0 can
be obtained from (a) by the inversions x,Xx — —x, —x. (b) The
basin of the symmetric period-four solution. (c) The basin of
the symmetric period-two solution.
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the pair of stationary solutions. Actually, the system
may have many asymptotic solutions coexisting in vari-
ous parameter regions. It is very interesting to investi-
gate the distribution of these attractors in the parameter
space and their basin structure in the variable space.

First we found numerically that there are three pairs of
different period-one solutions in the Q — F plane (see Fig.
4). One pair is the single-well attractors (1PSA), the oth-
ers are cross-well attractors (1IPCA). They are all asym-
metric (the letter S, C, and A in 1PSA and 1PCA indicate
single-well, cross-well, and asymmetric, respectively).
They appear via saddle-node bifurcation (solid lines) and
become unstable via period-doubling bifurcation (dashed
lines).

Apart from the asymmetric 2P solutions, arising via
the period doubling of the period-one solutions, we also
find that there are two different symmetric period-two or-
bits, which are all cross-well orbits (2PCS, where the
letter S indicates symmetric) and shown in Fig. 5. The
notation SB represents the symmetry-breaking curve.
Furthermore, we also find a symmetric period-four solu-
tion (4PCS) in the parameter plane, shown in the right-
lower part of Fig. 5.

If we compare Figs. 3-5, it is clear that the regions of
various types of motions heavily overlap each other, indi-
cating the coexistence of multiple attractors. In the over-
lapped regions, at one parameter point, the system can be
attracted to different orbits, depending on the initial
preparations. Then an investigation of the basin struc-
ture in the variable space turns out to be extremely in-
teresting. As working examples, we demonstrate two
cases of coexisting attractors. First, we choose the pa-
rameters 1=3.5 and F=5.0, which are located in the re-
gion where a pair of stationary solutions, a symmetric
period-two solution and a symmetric period-four solu-
tion, coexist (see Figs. 3—5). We show the trajectories of

-2 1 1 1 1 1 1 ! 1 1

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
T

FIG. 8. Asymptotic orbits of Eq. (6) at Q=1.45, F=8.5.
Solid lines, the pair of period-one solutions; dashed line, the
symmetric period-two solution.
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the symmetric period-two and -four solutions in Fig. 6.
Their corresponding basins in the Poincaré section are
shown in Fig. 7. It is noticeable that the basin boun-
daries of the solutions tangle together and form a compli-
cated structure in the Poincaré section. Figure 7 is
made as follows. We divide the square variable region
[—3,3]X[—3,3] in the Poincaré section into 300300
grids. Then we integrate Eq. (6) exhaustively for every
point on the grids, until an asymptotic state is reached;
then the initial point belongs to the basin of the finally
reached orbit.

At the parameters Q=1.45 and F=38.5, there are five
attractors coexisting. In addition to the pair of station-
ary solutions, there exists a pair of single-well period-one
solutions and a symmetric period-two solution (see Fig.
8). The basins of these coexisting attractors are shown in
Fig. 9. The boundaries of the basins shown in Figs. 7 and
9 clearly form fractals. A similar fractal structure has

Yyor .
-1 7
2k /;
-3t ! 1 L |/

-3 -2 -1 1 2 3

0
x

FIG. 9. Basin structure of the attractors in the Poincaré sec-
tion at 2=1.45, F=8.5. The basins are still represented by the
black regions. (a) The basin of the stationary solution x =1,
% =0. (b) The basin of the right-well period-one solution. (c)
The basin of the symmetric period-two solution. The basins of
x = —1, x =0 and the left-well 1P solution can be obtained from
(a) and (b), respectively, by the inversions x,Xx — —x, —X.
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been reported for Eq. (5) [12]. With Eq. (6) the fractal
structures are even more complicated with more basins
coexisting. Since the bifurcation curves of different solu-
tions often cross each other, the status of coexisting at-
tractors occurs very frequently. By varying parameters,
the coexisting attractors may be changed and some can
be suddenly ceased by some mechanism such as the
boundary crisis or fold bifurcation; here we do not dis-
cuss the details of this matter [8-10].

VI. CONCLUDING REMARKS

We have studied the dynamics of the parametrically
damped two-well Duffing equation in the Q—F plane.
The following results are worth noting.

(i) The parametrically damped two-well Duffing equa-
tion always possesses a pair of stationary solutions
x=x1, x =0. The stability boundary of these stationary
solutions can be obtained in terms of Floquet theory.
The theoretical predictions perfectly fit numerically re-
sults.

(ii) On the instability boundary with eigenvalue —1 we
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have found different bifurcations (both supercritical and
subcritical), such as period-doubling bifurcation and
saddle-node bifurcation, among others, leading to very
rich destinations. The attractor distribution underlying
this richness is emphasized.

(iii) Many low periodic symmetric and asymmetric or-
bits have been found in the parameter plane. The distri-
bution of coexisting attractors in the parameter plane is
shown numerically. We also study the basin structure of
the coexisting attractors for two parameter points. An
interesting fractal structure of the basin boundaries is re-
vealed.
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